Format

Send to

Choose Destination
Chemosphere. 2019 Mar;218:1042-1049. doi: 10.1016/j.chemosphere.2018.11.191. Epub 2018 Nov 28.

Renal function and isomers of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS): Isomers of C8 Health Project in China.

Author information

1
Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
2
Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, 12144, USA; Department of Environmental Health Sciences & Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, 12144, USA.
3
Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, 63104, USA.
4
Center for Health Outcomes Research, Saint Louis University, Saint Louis, 63104, USA.
5
Department of Health Management and Policy, College for Public Health & Social Justice, Saint Louis University, Saint Louis 63104, USA.
6
Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, 12144, USA; Department of Environmental Health Sciences & Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, 12144, USA.
7
Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
8
Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Department of Environmental Health Sciences & Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, 12144, USA.
9
Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China. Electronic address: donggh5@mail.sysu.edu.cn.

Abstract

Perfluoroalkyl substances (PFASs) are widely-utilized synthetic chemicals commonly found in industrial and consumer products. Previous studies have examined associations between PFASs and renal function, yet the results are mixed. Moreover, evidence on the associations of isomers of PFASs with renal function in population from high polluted areas is scant. To help to address this data gap, we used high performance liquid chromatography-mass spectrometry to measure serum isomers of perfluorooctanoate (PFOA), perfluorooctanesulfonate (PFOS), and other PFASs from 1612 adults residing in Shenyang, China, and characterized their associations with estimated glomerular filtration rate (eGFR) and chronic kidney disease (CKD). Results showed that after adjusted for multiple confounding factors, most of the higher fluorinated PFASs, except for PFOA and PFDA, were negatively associated with eGFR and positively associated with CKD. Compared with linear PFOS (n-PFOS), branched PFOS isomers (Br-PFOS) were more strongly associated with eGFR (Br-PFOS; β = -1.22, 95%CI: 2.02, -0.42; p = 0.003 vs. n-PFOS; β = -0.16, 95%CI: 0.98, 0.65; p = 0.691) and CKD (Br-PFOS; OR = 1.27; 95% CI: 1.02, 1.58; p = 0.037 vs. n-PFOS; OR = 0.98; 95% CI: 0.80, 1.20; p = 0.834). In conclusion, branched PFOS isomers were negatively associated with renal function whereas their linear counterparts were not. Given widespread exposure to PFASs, potential nephrotoxic effects are of great public health concern, Furthermore, longitudinal research on the potential nephrotoxic effects of PFASs isomers will be necessary to more definitively assess the risk.

KEYWORDS:

Estimated glomerular filtration rate; Isomers of C8 health project; PFASs isomers; Polyfluoroalkyl substances (PFASs); Renal function

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center