Slow Hot-Carrier Cooling in Halide Perovskites: Prospects for Hot-Carrier Solar Cells

Adv Mater. 2019 Nov;31(47):e1802486. doi: 10.1002/adma.201802486. Epub 2019 Jan 2.

Abstract

Rapid hot-carrier cooling is a major loss channel in solar cells. Thermodynamic calculations reveal a 66% solar conversion efficiency for single junction cells (under 1 sun illumination) if these hot carriers are harvested before cooling to the lattice temperature. A reduced hot-carrier cooling rate for efficient extraction is a key enabler to this disruptive technology. Recently, halide perovskites emerge as promising candidates with favorable hot-carrier properties: slow hot-carrier cooling lifetimes several orders of magnitude longer than conventional solar cell absorbers, long-range hot-carrier transport (up to ≈600 nm), and highly efficient hot-carrier extraction (up to ≈83%). This review presents the developmental milestones, distills the complex photophysical findings, and highlights the challenges and opportunities in this emerging field. A developmental toolbox for engineering the slow hot-carrier cooling properties in halide perovskites and prospects for perovskite hot-carrier solar cells are also discussed.

Keywords: Shockley-Queisser limit; halide perovskite; hot carriers; hot-carrier solar cell; phonon bottleneck.

Publication types

  • Review