Format

Send to

Choose Destination
Redox Biol. 2018 Dec 16;21:101078. doi: 10.1016/j.redox.2018.101078. [Epub ahead of print]

D3T acts as a pro-oxidant in a cell culture model of diabetes-induced peripheral neuropathy.

Author information

1
Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, United States.
2
Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, United States. Electronic address: burgesjr@purdue.edu.

Abstract

Diabetes mellitus is one of the most common chronic diseases in the United States and peripheral neuropathy (PN) affects at least 50% of diabetic patients. Medications available for patients ameliorate symptoms (pain), but do not protect against cellular damage and come with severe side effects, leading to discontinued use. Our research group uses differentiated SH-SY5Y cells treated with advanced glycation end products (AGE) as a model to mimic diabetic conditions and to study the mechanisms of oxidative stress mediated cell damage and antioxidant protection. N-acetylcysteine (NAC), a common antioxidant supplement, was previously shown by our group to fully protect against AGE-induced damage. We have also shown that 3H-1,2-dithiole-3-thione (D3T), a cruciferous vegetable constituent and potent inducer of nuclear factor (erythroid-derived 2)- like 2 (Nrf2), can significantly increase cellular GSH concentrations and protect against oxidant species-induced cell death. Paradoxically, D3T conferred no protection against AGE-induced cell death or neurite degeneration. In the present study we establish a mechanism for this paradox by showing that D3T in combination with AGE increased oxidant species generation and depleted GSH via inhibition of glutathione reductase (GR) activity and increased expression of the NADPH generating enzyme glucose-6-phosphate dehydrogenase (G6PD). Blocking NADPH generation with the G6PD inhibitor dehydroepiandrosterone was found to protect against AGE-induced oxidant species generation, loss of viability, and neurite degeneration. It further reversed the D3T potentiation effect under AGE-treated conditions. Collectively, these results suggest that strategies aimed at combating oxidative stress that rely on upregulation of the endogenous antioxidant defense system via Nrf2 may backfire and promote further damage in diabetic PN.

KEYWORDS:

D3T; Diabetes; NAC; Oxidative stress; Peripheral neuropathy; Redox balance

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center