Format

Send to

Choose Destination
Free Radic Biol Med. 2019 Feb 1;131:370-375. doi: 10.1016/j.freeradbiomed.2018.12.016. Epub 2018 Dec 21.

Mitochondrial aquaporin-8 is involved in SREBP-controlled hepatocyte cholesterol biosynthesis.

Author information

1
Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
2
Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina. Electronic address: rmarinel@unr.edu.ar.

Abstract

Cholesterol, via sterol regulatory element-binding protein (SREBP) transcription factors, activates or represses genes involved in its hepatic biosynthetic pathway, and also modulates the expression of hepatocyte mitochondrial aquaporin-8 (mtAQP8), a channel that can function as peroxiporin by facilitating the transmembrane diffusion of H2O2. Here we tested the hypothesis that mtAQP8 is involved in the SREBP-mediated regulation of hepatocyte cholesterol biosynthesis. Using human hepatocyte-derived Huh-7 cells and primary rat hepatocytes, we found that mtAQP8 knockdown significantly downregulated de novo cholesterol synthesis as well as protein expressions of SREBP-2 and its target gene, a rate-limiting enzyme in cholesterol synthesis 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR). In contrast, adenovirus-mediated human AQP8 mitochondrial expression significantly increased de novo cholesterol synthesis and protein expressions of SREBP-2 and HMGCR. In mtAQP8-overexpressed hepatocytes, mitochondrial H2O2 release was found to be increased; and a mitochondria-targeted antioxidant prevented the upregulation of mitochondrial H2O2 release and that of cholesterol synthesis. Our results suggest that peroxiporin mtAQP8 plays a role in the SREBP-controlled hepatocyte cholesterogenesis, a finding that might be relevant to cholesterol-related metabolic disorders.

KEYWORDS:

Aquaporin-8; Cholesterogenesis; Hepatocytes; Mitochondrial H(2)O(2)

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center