Send to

Choose Destination
Anal Chem. 2018 Dec 20. doi: 10.1021/acs.analchem.8b02611. [Epub ahead of print]

Rapid microbial identification and antibiotic resistance detection by mass spectrometric analysis of membrane lipids.


Infectious diseases have a substantial global health impact. Clinicians need rapid and accurate diagnoses of infections to direct patient treatment and improve antibiotic stewardship. Current technologies employed in routine diagnostics are based on bacterial culture followed by morphological trait differentiation and biochemical testing, which can be time-consuming and labor-intensive. With advances in mass spectrometry (MS) for clinical diagnostics, the U.S. Food and Drug Administration has approved two mi-crobial identification platforms based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS analysis of microbial proteins. We recently reported a novel and complementary approach by comparing MALDI-TOF mass spectra of micro-bial membrane lipid fingerprints to identify ESKAPE pathogens. However, this lipid-based approach used a sample preparation method that required more than a working day from sample collection to identification. Here, we report a new method that ex-tracts lipids efficiently and rapidly from microbial membranes using an aqueous sodium acetate (SA) buffer that can be used to identify clinically relevant Gram-positive and -negative pathogens and fungal species in less than an hour. The SA method also has the ability to differentiate antibiotic-susceptible and antibiotic-resistant strains, directly identify microbes from biological speci-mens, and detect multiple pathogens in a mixed sample. These results should have positive implications for the manner in which bacteria and fungi are identified in general hospital settings and intensive care units.

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center