Format

Send to

Choose Destination
New Phytol. 2019 Apr;222(2):1043-1053. doi: 10.1111/nph.15646. Epub 2019 Jan 21.

Nutrient exchange in arbuscular mycorrhizal symbiosis from a thermodynamic point of view.

Author information

1
SFB 1208 - Identity and Dynamics of Membrane Systems - from Molecules to Cellular Functions, Heinrich Heine Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
2
Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca, 3460000, Chile.
3
Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
4
Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
5
Institute of Botany, Heinrich-Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
6
Institute for Molecular Evolution, Heinrich Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
7
Instalación en la Academia, Núcleo Científico Multidisciplinario, Dirección de Investigación, Vicerrectoría Académica, Universidad de Talca, 2 Norte 685, Talca, 3460000, Chile.
8
Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, 3460000, Chile.
9
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Avda. Larrondo 1281, Coquimbo, Chile.
10
Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany.
11
Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Koln, Germany.
12
John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) & Institute for Complex Systems - Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.

Abstract

To obtain insights into the dynamics of nutrient exchange in arbuscular mycorrhizal (AM) symbiosis, we modelled mathematically the two-membrane system at the plant-fungus interface and simulated its dynamics. In computational cell biology experiments, the full range of nutrient transport pathways was tested for their ability to exchange phosphorus (P)/carbon (C)/nitrogen (N) sources. As a result, we obtained a thermodynamically justified, independent and comprehensive model of the dynamics of the nutrient exchange at the plant-fungus contact zone. The predicted optimal transporter network coincides with the transporter set independently confirmed in wet-laboratory experiments previously, indicating that all essential transporter types have been discovered. The thermodynamic analyses suggest that phosphate is released from the fungus via proton-coupled phosphate transporters rather than anion channels. Optimal transport pathways, such as cation channels or proton-coupled symporters, shuttle nutrients together with a positive charge across the membranes. Only in exceptional cases does electroneutral transport via diffusion facilitators appear to be plausible. The thermodynamic models presented here can be generalized and adapted to other forms of mycorrhiza and open the door for future studies combining wet-laboratory experiments with computational simulations to obtain a deeper understanding of the investigated phenomena.

KEYWORDS:

computational cell biology; modelling; nutrient transport; plant biophysics; plant-fungus interaction

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center