Format

Send to

Choose Destination
Int J Vet Sci Med. 2018 Aug 30;6(2):286-295. doi: 10.1016/j.ijvsm.2018.08.003. eCollection 2018 Dec.

Microwave assisted green synthesis of Hydroxyapatite nanorods using Moringa oleifera flower extract and its antimicrobial applications.

Author information

1
Department of Physics, Sri Sarada College for Women, Salem - 636 016, Tamil Nadu, India.
2
Department of Physics, Navarasam Arts & Science College for Women, Arachalur, Erode- 638101, Tamil Nadu, India.
3
Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Campus 6 Floor, Karaikudi 630 004, Tamil Nadu, India.

Abstract

Hydroxyapatite is an important biomaterial and main mineral component found in bones for potential clinical applications. Moringa oleifera, a common plant in which all parts are edible and rich in iron content. This study reported the chemically synthesized Hydroxyapatite and green synthesis of Hydroxyapatite nanorods using the aqueous flower extract of Moringa oleifera by microwave assisted method. The synthesized Moringa oleifera flower extract Hydroxyapatite nanorods were characterized by UV-Vis spectroscopy (UV-vis), Fourier Transform Infra Red spectroscopy (FTIR), X-Ray Diffraction analysis (XRD), Transmission Electron Microscopy (TEM), Photo Luminescence spectroscopy (PL), Thermo Gravimetric analysis (TGA) and Energy Dispersive X-ray analysis (EDX). In addition, the antimicrobial activity of these nanorods was assessed. Moringa oleifera flower extract Hydroxyapatite nanorods were crystalline in nature, rod like structure with a mean particle size of 41 nm. The antibacterial activity of Moringa oleifera flower extract capped Hydroxyapatite nanorods was greater against Gram positive bacteria than Gram negative bacteria. Furthermore, Moringa oleifera extract capped Hydroxyapatite nanorods showed a very good antifungal activity against three common pathogenic fungi including; Candida albicans, Aspergillus fumigatus and Aspergillus niger.

KEYWORDS:

Antibacterial; Antifungal, Candida albicans; Aspergillus fumigatus; Hydroxyapatite; Moringa flower

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center