Format

Send to

Choose Destination
See comment in PubMed Commons below
Rev Infect Dis. 1988 Jul-Aug;10 Suppl 2:S450-6.

Human neutrophil antimicrobial activity.

Author information

1
Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38101.

Abstract

Polymorphonuclear neutrophilic leukocytes (PMNs) take up opsonized microorganisms into phagosomes that fuse with secretory granules in the PMN cytoplasm to form phagolysosomes. Killing and digestion of microorganisms take place within phagolysosomes. Antimicrobial activities in phagolysosomes are divided into two classes. Oxygen (O2)-dependent mechanisms are expressed when PMNs undergo the "respiratory burst." An NADPH oxidase in the phagolysosome membrane is activated and reduces O2 to superoxide (O2-). O2 reduction is the first step in a series of reactions that produce toxic oxidants. For example, .O2- dismutases to hydrogen peroxide (H2O2), and the azurophil granule enzyme myeloperoxidase catalyzes the oxidation of Cl- by H2O2 to yield hypochlorous acid (HOCl). The reaction of HOCl with ammonia and amines modulates the toxicity of this oxidant. O2-independent antimicrobial mechanisms include the activities of lysosomal proteases, other hydrolytic enzymes, and proteins and peptides that bind to microorganisms and disrupt essential processes or structural components. For example, the bactericidal/permeability-increasing protein, cathepsin G, and the defensins are released into phagolysosomes from the azurophil granules. Proposed mechanisms of action of neutrophil antimicrobial agents, their range of microbial targets, and their possible interactions within phagolysosomes are discussed.

PMID:
3055215
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center