Format

Send to

Choose Destination
J Mol Neurosci. 2019 Jan;67(1):62-71. doi: 10.1007/s12031-018-1210-3. Epub 2018 Dec 7.

Ginsenoside Compound K Regulates Amyloid β via the Nrf2/Keap1 Signaling Pathway in Mice with Scopolamine Hydrobromide-Induced Memory Impairments.

Author information

1
Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
2
Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China. lhaln@hotmail.com.
3
Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China. quxiaobo0504@hotmail.com.

Abstract

The objective of this study was to investigate the neuroprotective and antioxidant effects of ginsenoside compound K (CK) in a model of scopolamine hydrobromide-induced, memory-impaired mice. The role of CK in the regulation of amyloid β (Aβ) and its capacity to activate the Nrf2/Keap1 signaling pathway were also studied due to their translational relevance to Alzheimer's disease. The Morris water maze was used to assess spatial memory functions. Levels of superoxide dismutase, glutathione peroxidase, and malondialdehyde in brain tissues were tested. Cell morphology was detected by hematoxylin and eosin staining and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay. Immunohistochemistry and western blotting were used to determine expression levels of Nrf2/Keap1 signaling pathway-related factors and Aβ. Ginsenoside CK was found to enhance memory function, normalize neuronal morphology, decrease neuronal apoptosis, increase superoxide dismutase and glutathione peroxidase levels, reduce malondialdehyde levels, inhibit Aβ expression, and activate the Nrf2/Keap1 signaling pathway in scopolamine-exposed animals. Based on these results, we conclude that CK may improve memory function in scopolamine-injured mice by regulating Aβ aggregation and promoting the transduction of the Nrf2/Keap1 signaling pathway, thereby reducing oxidative damage to neurons and inhibiting neuronal apoptosis. This study suggests that CK may serve as a future preventative agent or treatment for Alzheimer's disease.

KEYWORDS:

Alzheimer’s disease; Amyloid β; Ginsenoside compound K; Scopolamine; Spatial memory

PMID:
30535776
DOI:
10.1007/s12031-018-1210-3
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center