Format

Send to

Choose Destination
Diabetes Metab Syndr Obes. 2018 Nov 15;11:707-716. doi: 10.2147/DMSO.S173809. eCollection 2018.

Perfluoroalkyl substances and kidney function in chronic kidney disease, anemia, and diabetes.

Author information

1
Department of Epidemiology, School of Public Health, West Virginia University, Morgantown, WV, USA, baqiyyah.conway@uthct.edu.
2
Department of Community Health, School of Rural and Community Health, University of Texas Health Science Center at Tyler, Tyler, TX, USA, baqiyyah.conway@uthct.edu.
3
Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
4
Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
5
Department of Internal Medicine, Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

Abstract

Background:

Anemia often complicates chronic kidney disease (CKD), leading to insufficient tissue oxygenation and hypoxic injury, the factor thought to underlie progression from CKD to renal failure. Perfluorocarbons are potent oxygen transporters used in organ preservation and synthetic blood development. Data are scarce on their relationship with kidney function, especially in diabetes where anemia and hypoxia are more prevalent. We investigated the relationship of perfluoroalkyl acids (PFAS) with kidney function and variation by diabetes and anemia status.

Methods:

Data on 53,650 adults (5,210 with diabetes) were obtained from the C8 Health Project. CKD was defined as an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2. Four PFAS were investigated: perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid, perfluorooctane sulfonate, and perfluorononanoic acid.

Findings:

Each PFAS was positively associated with eGFR among those with CKD or anemia; this was the strongest among those with both CKD and anemia, followed by those with CKD uncomplicated by anemia. These relationships were more pronounced among those with diabetes (all P<0.01). In the absence of both CKD and anemia, PFAS was inversely associated with eGFR. Among persons with both anemia and diabetes, when further stratified by CKD stage, compared to an eGFR <30, ORs (95% CI) for being in the eGFR ≥ 90, 60-89, 45-59, and 30-45 range, respectively, were 3.20 (2.00-5.13), 2.64 (1.83-3.80), 3.18 (2.17-4.67), and 1.99 (1.38-2.86) for each ng/dL increase in PFHxS. Results were similar for each PFAS.

Interpretation:

PFAS are inversely associated with kidney function in CKD and diabetes, with a stronger relation observed when anemia is present.

KEYWORDS:

anemia; chronic kidney disease; diabetes; hypoxia; perfluoroalkyl substances

Supplemental Content

Full text links

Icon for Dove Medical Press Icon for PubMed Central
Loading ...
Support Center