Format

Send to

Choose Destination
Front Endocrinol (Lausanne). 2018 Nov 22;9:670. doi: 10.3389/fendo.2018.00670. eCollection 2018.

Vascular Endothelial Growth Factor (VEGF) Induced Downstream Responses to Transient Receptor Potential Vanilloid 1 (TRPV1) and 3-Iodothyronamine (3-T1AM) in Human Corneal Keratocytes.

Author information

1
Klinik für Augenheilkunde, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
2
Department of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.
3
Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
4
Walter Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Munich, Germany.
5
School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China.
6
Berlin Institute of Health (BIH), Berlin, Germany.
7
Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.

Abstract

This study was undertaken to determine if crosstalk among the transient receptor potential (TRP) melastatin 8 (TRPM8), TRP vanilloid 1 (TRPV1), and vascular endothelial growth factor (VEGF) receptor triad modulates VEGF-induced Ca2+ signaling in human corneal keratocytes. Using RT-PCR, qPCR and immunohistochemistry, we determined TRPV1 and TRPM8 gene and protein coexpression in a human corneal keratocyte cell line (HCK) and human corneal cross sections. Fluorescence Ca2+ imaging using both a photomultiplier and a single cell digital imaging system as well as planar patch-clamping measured relative intracellular Ca2+ levels and underlying whole-cell currents. The TRPV1 agonist capsaicin increased both intracellular Ca2+ levels and whole-cell currents, while the antagonist capsazepine (CPZ) inhibited them. VEGF-induced Ca2+ transients and rises in whole-cell currents were suppressed by CPZ, whereas a selective TRPM8 antagonist, AMTB, increased VEGF signaling. In contrast, an endogenous thyroid hormone-derived metabolite 3-Iodothyronamine (3-T1AM) suppressed increases in the VEGF-induced current. The TRPM8 agonist menthol increased the currents, while AMTB suppressed this response. The VEGF-induced increases in Ca2+ influx and their underlying ionic currents stem from crosstalk between VEGFR and TRPV1, which can be impeded by 3-T1AM-induced TRPM8 activation. Such suppression in turn blocks VEGF-induced TRPV1 activation. Therefore, crosstalk between TRPM8 and TRPV1 inhibits VEGFR-induced activation of TRPV1.

KEYWORDS:

3-iodothyronamine; human corneal keratocytes; intracellular Ca2+; planar patch-clamp technique; thyronamine; transient receptor potential channel melastatin 8; transient receptor potential channel vanilloid 1; vascular endothelial growth factor

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center