Format

Send to

Choose Destination
Sci Rep. 2018 Dec 4;8(1):17626. doi: 10.1038/s41598-018-35858-7.

Inversion and computational maturation of drug response using human stem cell derived cardiomyocytes in microphysiological systems.

Author information

1
Simula Research Laboratory, Oslo, Norway. aslak@simula.no.
2
Simula Research Laboratory, Oslo, Norway.
3
Departments of Bioengineering, Material Science and Engineering, University of California, Berkeley, California, USA.
4
Department of Biosciences, University of Oslo, Oslo, Norway.

Abstract

While cardiomyocytes differentiated from human induced pluripotent stems cells (hiPSCs) hold great promise for drug screening, the electrophysiological properties of these cells can be variable and immature, producing results that are significantly different from their human adult counterparts. Here, we describe a computational framework to address this limitation, and show how in silico methods, applied to measurements on immature cardiomyocytes, can be used to both identify drug action and to predict its effect in mature cells. Our synthetic and experimental results indicate that optically obtained waveforms of voltage and calcium from microphysiological systems can be inverted into information on drug ion channel blockage, and then, through assuming functional invariance of proteins during maturation, this data can be used to predict drug induced changes in mature ventricular cells. Together, this pipeline of measurements and computational analysis could significantly improve the ability of hiPSC derived cardiomycocytes to predict dangerous drug side effects.

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center