Format

Send to

Choose Destination
Neurochem Int. 2019 Jan;122:208-215. doi: 10.1016/j.neuint.2018.11.021. Epub 2018 Nov 30.

Ukgansan protects dopaminergic neurons from 6-hydroxydopamine neurotoxicity via activation of the nuclear factor (erythroid-derived 2)-like 2 factor signaling pathway.

Author information

1
Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
2
Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Department of Medical Science of Meridian, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
3
Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
4
Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea. Electronic address: msohok@khu.ac.kr.

Abstract

The sustenance of redox homeostasis in brain is the crucial factor to treat Parkinson's disease (PD). Nuclear factor (erythroid-derived 2)-like 2 factor (Nrf2)-mediated antioxidant response is well known for the main cellular endogenous defense mechanisms against oxidative stress. This study investigated for the first time the effects and possible mechanisms of action of Ukgansan on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in both in vitro and in vivo models of PD. We investigated the protective effect of Ukgansan against 6-OHDA with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. In addition, we demonstrated that Ukgansan significantly increased the expression of antioxidant response elements (ARE) and pro-survival protein as Bcl2 and suppressed the expression of pro-apoptotic factors, such as Bax, cytochrome c, and caspase-3 using immunoblotting. For the in vivo study, we used a mouse model of PD involving stereotaxic injection of 6-OHDA into the striatum (ST). Ukgansan alleviated motor dysfunctions induced by 6-OHDA followed by pole, open-field, and rotation tests. Dopaminergic neuronal loss and Nrf2 activation were evaluated by immunohistochemistry in the mouse ST and substantia nigra pars compacta (SNpc) regions. Ukgansan significantly protected dopaminergic neurons from 6-OHDA toxicity in mouse ST and SNpc by activating Nrf2. These results indicate that Ukgansan inhibited 6-OHDA-induced dopaminergic neuronal cell damage via activation of Nrf2 and its related factors in 6-OHDA-induced dopaminergic loss in vitro and in vivo. Thus, Ukgansan might delay the progression of PD via maintenance of redox homeostasis.

KEYWORDS:

6-hydroxydopamine; Neuroprotection; Nuclear factor (erythroid-derived 2)-like 2; Parkinson's disease; Ukgansan

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center