Format

Send to

Choose Destination
Int J Mol Sci. 2018 Nov 28;19(12). pii: E3788. doi: 10.3390/ijms19123788.

Molecular Characterization and Overexpression of SmJMT Increases the Production of Phenolic Acids in Salvia miltiorrhiza.

Author information

1
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China. happywangbin2003@163.com.
2
College of Chemistry, Biology and Materials Science, East China University of Technology, NanChang 330013, China. happywangbin2003@163.com.
3
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China. niujunfeng6829@126.com.
4
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China. libin1989@snnu.edu.cn.
5
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China. h_yoyo@snnu.edu.cn.
6
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China. hdd_1981_@163.com.
7
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China. shidayuanchu@snnu.edu.cn.
8
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China. wenzhou0229@snnu.edu.cn.
9
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China. husuying0315@163.com.
10
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China. shidalilin@snnu.edu.cn.
11
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China. wangdonghao@snnu.edu.cn.
12
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China. wsq@snnu.edu.cn.
13
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China. caoxiaoyan@snnu.edu.cn.
14
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China. zzwang@snnu.edu.cn.

Abstract

Jasmonic acid (JA) carboxyl methyltransferase (JMT), a key enzyme in jasmonate-regulated plant responses, may be involved in plant defense and development by methylating JA to MeJA, thus influencing the concentrations of MeJA in plant. In this study, we isolated the JMT gene from Salvia miltiorrhiza, an important medicinal plant widely used to treat cardiovascular disease. We present a genetic manipulation strategy to enhance the production of phenolic acids by overexpresion SmJMT in S. miltiorrhiza. Global transcriptomic analysis using RNA sequencing showed that the expression levels of genes involved in the biosynthesis pathway of phenolic acids and MeJA were upregulated in the overexpression lines. In addition, the levels of endogenous MeJA, and the accumulation of rosmarinic acid (RA) and salvianolic acid (Sal B), as well as the concentrations of total phenolics and total flavonoids in transgenic lines, were significantly elevated compared with the untransformed control. Our results demonstrate that overexpression of SmJMT promotes the production of phenolic acids through simultaneously activating genes encoding key enzymes involved in the biosynthesis pathway of phenolic acids and enhancing the endogenous MeJA levels in S. miltiorrhiza.

KEYWORDS:

Salvia miltiorrhiza; SmJMT; overexpression; phenolic acids; transcriptome; transgenic

PMID:
30487420
PMCID:
PMC6321555
DOI:
10.3390/ijms19123788
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center