Mechanism of memory effect of paste which dominates desiccation crack patterns

Philos Trans A Math Phys Eng Sci. 2018 Nov 26;377(2136):20170395. doi: 10.1098/rsta.2017.0395.

Abstract

When a densely packed colloidal suspension, called a paste, behaves as plastic fluid, it can remember the direction of its motion it has experienced, such as vibrational motion and flow. These memories kept in paste can be visualized as the morphology of crack patterns that appear when the paste is dried. For example, when a paste remembers the direction of vibrational motion, all primary desiccation cracks propagate in the direction perpendicular to the direction of the vibrational motion that the paste has experienced. On the other hand, when a paste remembers the direction of flow motion, all primary cracks propagate along the flow direction. To find out the mechanism of memory effect of vibration, we perform experiments to rewrite memory in paste by applying additional vibration to the paste along a different direction before the paste is dried. By investigating the process of rewriting memory in paste, we find the competitive phenomena between quasi-linear effect and nonlinear effect, which were studied in each theoretical model based on residual tension theories. That is, at the initial stage of the memory-imprinting process of the vibrational motion, the mechanism predicted by the quasi-linear analysis based on residual tension theory holds, but, as the paste is vibrated repeatedly, the mechanism shown by the nonlinear analysis gradually come to play a dominant role in the memory effect.This article is part of the theme issue 'Statistical physics of fracture and earthquakes'.

Keywords: colloidal suspension; control of crack pattern; desiccationcracks; memory effect; plastic fluid.