Format

Send to

Choose Destination
Neuron. 2018 Nov 21;100(4):977-993.e7. doi: 10.1016/j.neuron.2018.10.010. Epub 2018 Oct 25.

Spatial and Temporal Organization of the Individual Human Cerebellum.

Author information

1
Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address: smarek@wustl.edu.
2
Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
3
VISN17 Center of Excellence for Research on Returning War Veterans, Waco, TX 76711, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA.
4
Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
5
Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA.
6
Department of Psychology, New York University, New York, NY 10003 USA.
7
Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
8
Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA.
9
Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
10
Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.
11
Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
12
Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA.
13
Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
14
Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.
15
Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA.

Abstract

The cerebellum contains the majority of neurons in the human brain and is unique for its uniform cytoarchitecture, absence of aerobic glycolysis, and role in adaptive plasticity. Despite anatomical and physiological differences between the cerebellum and cerebral cortex, group-average functional connectivity studies have identified networks related to specific functions in both structures. Recently, precision functional mapping of individuals revealed that functional networks in the cerebral cortex exhibit measurable individual specificity. Using the highly sampled Midnight Scan Club (MSC) dataset, we found the cerebellum contains reliable, individual-specific network organization that is significantly more variable than the cerebral cortex. The frontoparietal network, thought to support adaptive control, was the only network overrepresented in the cerebellum compared to the cerebral cortex (2.3-fold). Temporally, all cerebellar resting state signals lagged behind the cerebral cortex (125-380 ms), supporting the hypothesis that the cerebellum engages in a domain-general function in the adaptive control of all cortical processes.

KEYWORDS:

fMRI; frontoparietal network; functional networks; human cerebellum; individual variability; resting state functional connectivity; temporal lags

PMID:
30473014
PMCID:
PMC6351081
[Available on 2019-11-21]
DOI:
10.1016/j.neuron.2018.10.010

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center