Format

Send to

Choose Destination
Nat Chem Biol. 2019 Jan;15(1):80-87. doi: 10.1038/s41589-018-0163-8. Epub 2018 Nov 19.

Polarized displacement by transcription activator-like effectors for regulatory circuits.

Author information

1
Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
2
EN-FIST Centre of Excellence, Ljubljana, Slovenia.
3
Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia. roman.jerala@ki.si.
4
EN-FIST Centre of Excellence, Ljubljana, Slovenia. roman.jerala@ki.si.

Abstract

The interplay between DNA-binding proteins plays an important role in transcriptional regulation and could increase the precision and complexity of designed regulatory circuits. Here we show that a transcription activator-like effector (TALE) can displace another TALE protein from DNA in a highly polarized manner, displacing only the 3'- but not 5'-bound overlapping or adjacent TALE. We propose that the polarized displacement by TALEs is based on its multipartite nature of binding to DNA. The polarized TALE displacement provides strategies for the specific regulation of gene expression, for construction of all two-input Boolean genetic logic circuits based on the robust propagation of the displacement across multiple neighboring sites, for displacement of zinc finger-based transcription factors and for suppression of Cas9-gRNA-mediated genome cleavage, enriching the synthetic biology toolbox and contributing to the understanding of the underlying principles of the facilitated displacement.

PMID:
30455466
DOI:
10.1038/s41589-018-0163-8

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center