Format

Send to

Choose Destination
J Transl Med. 2018 Nov 16;16(1):313. doi: 10.1186/s12967-018-1690-5.

Sirtuin 3 deficiency aggravates contrast-induced acute kidney injury.

Author information

1
The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
2
Intensive Care Unit, Weifang People's Hospital, Weifang, Shandong, China.
3
The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China. yangjianminsdu@163.com.
4
The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China. bupeili@medmail.com.cn.

Abstract

BACKGROUND:

Sirtuin 3 (Sirt3) is a key regulator of energy metabolism and oxidative stress. To investigate the role of Sirt3 in contrast-induced acute kidney injury (CIAKI), we established the model both in vivo and in vitro to explore the potential mechanisms.

METHODS:

In vivo, we established CIAKI models in wild-type (WT) and Sirt3-knockout (Sirt3-KO) mice. Blood urea nitrogen (BUN) and serum creatinine (Scr) were detected by enzyme-linked immunosorbent assay, Glomerular Filtration Rate (GFR) and creatinine clearance were also investigated. We detected the production of reactive oxygen species (ROS) via 2'7'-dichlorodihydro-fluorescein diacetate. The expressions of Sirt3, oxidative stress and apoptosis related markers (MnSOD, Catalase, Acetyl-MnSOD K68, Nox4, Bax, Bcl-2 and Caspase3) were measured and analyzed. In addition, we observed the effect of nicotinamide riboside (NR) on CIAKI in WT and Sirt3-KO mice. In vitro, Sirt3 was knocked out by siRNA transfection method in HK-2 cells. Sirt3, ROS, oxidative stress and apoptosis markers in HK-2 cells were also measured.

RESULTS:

Our data demonstrated that the levels of Scr and BUN in Sirt3-KO mice were increased while the levels of the GFR and creatinine clearance were decreased in CIAKI mice. In Sirt3-KO or siRNA groups, the activities of MnSOD and Catalase were markedly down-regulated. Also, the expression of Caspase3 were markedly increased and the ratio of Bcl-2/Bax was decreased, while the ROS level was increased in Sirt3 deficiency groups. NR ameliorated CIAKI in WT mice but not in Sirt3-KO mice.

CONCLUSION:

Our results suggest that Sirt3 deficiency aggravates contrast-induced acute kidney injury. Sirt3 is critical in NR-mediated renoprotection in CIAKI.

KEYWORDS:

Apoptosis; Contrast-induced acute kidney injury; Reactive oxygen species; Sirt3

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center