Programming Protein Polymerization with DNA

J Am Chem Soc. 2018 Nov 21;140(46):15950-15956. doi: 10.1021/jacs.8b10011. Epub 2018 Nov 8.

Abstract

A strategy that utilizes DNA for controlling the association pathway of proteins is described. This strategy uses sequence-specific DNA interactions to program energy barriers for polymerization, allowing for either step-growth or chain-growth pathways to be accessed. Two sets of mutant green fluorescent protein (mGFP)-DNA monomers with single DNA modifications have been synthesized and characterized. Depending on the deliberately controlled sequence and conformation of the appended DNA, these monomers can be polymerized through either a step-growth or chain-growth pathway. Cryo-electron microscopy with Volta phase plate technology enables the visualization of the distribution of the oligomer and polymer products, and even the small mGFP-DNA monomers. Whereas cyclic and linear polymer distributions were observed for the step-growth DNA design, in the case of the chain-growth system linear chains exclusively were observed, and a dependence of the chain length on the concentration of the initiator strand was noted. Importantly, the chain-growth system possesses a living character whereby chains can be extended with the addition of fresh monomer. This work represents an important and early example of mechanistic control over protein assembly, thereby establishing a robust methodology for synthesizing oligomeric and polymeric protein-based materials with exceptional control over architecture.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • DNA / chemistry*
  • Green Fluorescent Proteins / chemistry*
  • Green Fluorescent Proteins / genetics
  • Mutation
  • Particle Size
  • Polymerization

Substances

  • Green Fluorescent Proteins
  • DNA