Send to

Choose Destination
Front Cell Neurosci. 2018 Oct 23;12:360. doi: 10.3389/fncel.2018.00360. eCollection 2018.

Overexpression of Kcnmb2 in Dorsal CA1 of Offspring Mice Rescues Hippocampal Dysfunction Caused by a Methyl Donor-Rich Paternal Diet.

Author information

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, China.
Department of Physiology, Binzhou Medical University, Yantai, China.
Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases, Bonn, Germany.
Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, China.


BK channels are known regulators of neuronal excitability, synaptic plasticity, and memory. Our previous study showed that a paternal methyl donor-rich diet reduced the expression of Kcnmb2, which encodes BK channel subunit beta 2, and caused memory deficits in offspring mice. To explore the underlying cellular mechanisms, we investigated the intrinsic and synaptic properties of CA1 pyramidal neurons of the F1 offspring mice whose fathers were fed with either a methyl donor-rich diet (MD) or regular control diet (CD) for 6 weeks before mating. Whole-cell patch-clamp recordings of CA1 pyramidal neurons revealed a decrease in intrinsic excitability and reduced frequency of inhibitory post-synaptic currents in MD F1 mice compared to the CD F1 controls. AAV-based overexpression of Kcnmb2 in dorsal CA1 ameliorated changes in neuronal excitability, synaptic transmission, and plasticity in MD F1 mice. Our findings thus indicate that a transient paternal exposure to a methyl donor-rich diet prior to mating alters Kcnmb2-sensitive hippocampal functions in offspring animals.


BK channels; DNA methylation; Kcnmb2; hippocampus; memory; offspring; paternal diet

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center