Send to

Choose Destination
Hum Mol Genet. 2019 Mar 1;28(5):764-777. doi: 10.1093/hmg/ddy380.

The deubiquitinating enzyme Usp14 controls ciliogenesis and Hedgehog signaling.

Author information

Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli, Naples, Italy.
Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea.
Medical Genetics, Department of Translational Medicine, University of Naples Federico II, Via Sergio Pansini 5, Naples, Italy.


Primary cilia are hair-like organelles that play crucial roles in vertebrate development, organogenesis and when dysfunctional result in pleiotropic human genetic disorders called ciliopathies, characterized by overlapping phenotypes, such as renal and hepatic cysts, skeletal defects, retinal degeneration and central nervous system malformations. Primary cilia act as communication hubs to transfer extracellular signals into intracellular responses and are essential for Hedgehog (Hh) signal transduction in mammals. Despite the renewed interest in this ancient organelle of growing biomedical importance, the molecular mechanisms that trigger cilia formation, extension and ciliary signal transduction are still not fully understood. Here we provide, for the first time, evidence that the deubiquitinase ubiquitin-specific protease-14 (Usp14), a major regulator of the ubiquitin proteasome system (UPS), controls ciliogenesis, cilia elongation and Hh signal transduction. Moreover, we show that pharmacological inhibition of Usp14 positively affects Hh signal transduction in a model of autosomal dominant polycystic kidney disease. These findings provide new insight into the spectrum of action of UPS in cilia biology and may provide novel opportunities for therapeutic intervention in human conditions associated with ciliary dysfunction.


Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center