A Perspective on Thiazolidinone Scaffold Development as a New Therapeutic Strategy for Toxoplasmosis

Front Cell Infect Microbiol. 2018 Oct 16:8:360. doi: 10.3389/fcimb.2018.00360. eCollection 2018.

Abstract

Toxoplasma gondii is one of the most successful parasites due to its ability to infect a wide variety of warm-blooded animals. It is estimated that one-third of the world's population is latently infected. The generic therapy for toxoplasmosis has been a combination of antifolates such as pyrimethamine or trimethoprim with either sulfadiazine or antibiotics such as clindamycin with a combination with leucovorin to prevent hematologic toxicity. This therapy shows limitations such as drug intolerance, low bioavailability or drug resistance by the parasite. There is a need for the development of new molecules with the capacity to block any stage of the parasite's life cycle in humans or in a different type of hosts. Heterocyclic compounds are promissory drugs due to its reported biological activity; for this reason, thiazolidinone and its derivatives are presented as a new alternative not only for its inhibitory activity against the parasite but also for its high selectivity-level with high therapeutic index. Thiazolidinones are an important scaffold known to be associated with anticancer, antibacterial, antifungal, antiviral, antioxidant, and antidiabetic activities. The molecule possesses an imidazole ring that has been described as an antiprotozoal agent with antiparasitic properties and less toxicity. Thiazolidinone derivatives have been reportedly as building blocks in organic chemistry and as scaffolds for drug discovery. Here we present a perspective of how structural modifications of the thiazolidinone core could generate new compounds with high anti-parasitic effect and less toxic results.

Keywords: Thiazolidinone scaffold; Toxoplasma gondii; in silico; new drug; toxoplasmosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antiprotozoal Agents / chemistry
  • Antiprotozoal Agents / pharmacology*
  • Antiprotozoal Agents / therapeutic use*
  • Drug Development*
  • Humans
  • Therapeutic Index, Drug
  • Thiazolidines / chemistry
  • Thiazolidines / pharmacology*
  • Thiazolidines / therapeutic use*
  • Toxoplasma / drug effects*
  • Toxoplasmosis / drug therapy*

Substances

  • Antiprotozoal Agents
  • Thiazolidines