Format

Send to

Choose Destination
Methods Mol Biol. 2019;1886:327-341. doi: 10.1007/978-1-4939-8894-5_19.

Molecular Recognition Force Spectroscopy for Probing Cell Targeted Nanoparticles In Vitro.

Author information

1
Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.
2
Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.
3
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.
4
Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.
5
Tissue Bioengineering, University of Bordeaux, U1026, Bordeaux, France.
6
Tissue Bioengineering, Inserm, U1026, Bordeaux, France.
7
Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.
8
Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal. apego@ineb.up.pt.
9
Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal. apego@ineb.up.pt.
10
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal. apego@ineb.up.pt.
11
Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal. apego@ineb.up.pt.

Abstract

In the development and design of cell targeted nanoparticle-based systems the density of targeting moieties plays a fundamental role in allowing maximal cell-specific interaction. Here, we describe the use of molecular recognition force spectroscopy as a valuable tool for the characterization and optimization of targeted nanoparticles toward attaining cell-specific interaction. By tailoring the density of targeting moieties at the nanoparticle surface, one can correlate the unbinding event probability between nanoparticles tethered to an atomic force microscopy tip and cells to the nanoparticle vectoring capacity. This novel approach allows for a rapid and cost-effective design of targeted nanomedicines reducing the need for long and tedious in vitro tests.

KEYWORDS:

Drug delivery; Single molecule force spectroscopy; Tailored nanomedicine; Targeted nanoparticles; Tip functionalization

PMID:
30374877
DOI:
10.1007/978-1-4939-8894-5_19
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center