TET2-Mediated Spatiotemporal Changes of 5-Hydroxymethylcytosine During Organogenesis in the Late Mouse Fetus

Anat Rec (Hoboken). 2019 Jun;302(6):954-963. doi: 10.1002/ar.24009. Epub 2018 Nov 25.

Abstract

Genomic DNA demethylation is important for mammalian embryonic development and organ function. 5-Hydroxymethylcytosine (5hmC) is considered a novel epigenetic marker. Ten-eleven translocation (TET) enzymes convert 5-methylcytosine (5mC) to 5hmC. To explore the dynamic changes of epigenetic modifications during organogenesis in the late mouse fetus, the regional distribution and histological localization of 5hmC and TET enzymes was investigated by immunohistochemical method. The liver of mouse fetus gradually matured from embryonic day (E) 12.5 to E18.5.5mC was positive in developing liver at E16.5 and E18.5. 5hmC, TET2 and TET3 were strongly positive in hepatocytes and oval cells at E18.5. The small intestinal villi were formed at E16.5. The striate border and goblet cells appeared at E18.5. 5mC was detectable from E12.5 to E18.5. 5hmC and TET2 were positive in small intestine at E12.5, E14.5, and E18.5. The alveolar was formed at E18.5. 5mC and 5hmC were detectable from E12.5 to E18.5. Only TET2 was positive in the lung of the late Kunming mouse fetus. For vertebra, mesenchymal cells formed hyaline cartilage at E15.5 and then ossify at E16.5 and E18.8. 5mC, 5hmC, and TET2 were detectable in chondrocytes and osteocytes during the late Kunming mouse fetal; TET1 expressed from E14.5 to E16.5 and TET3 expressed in bone matrix at E18.5. In summary, TET2 was strongly expressed in liver, small intestinal, lung, and vertebra in the late Kunming mouse fetus. These findings suggested that TET2 may play a more critical role than TET1 and TET3 during organogenesis in the late stage of Kunming mouse embryo. Anat Rec, 302:954-963, 2019. © 2018 Wiley Periodicals, Inc.

Keywords: 5-hydroxymethylcytosine; DNA demethylation; epigenetic modification; immunohistochemistry; organogenesis development; ten-eleven translocation enzymes 2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 5-Methylcytosine / analogs & derivatives*
  • 5-Methylcytosine / metabolism
  • Animals
  • Brain / embryology
  • Brain / metabolism*
  • DNA Methylation
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism*
  • Dioxygenases
  • Epigenomics
  • Female
  • Fetus / cytology
  • Fetus / metabolism*
  • Heart / embryology
  • Heart / physiology*
  • Mice
  • Organogenesis*
  • Pregnancy
  • Proto-Oncogene Proteins / genetics
  • Proto-Oncogene Proteins / metabolism*
  • Spatio-Temporal Analysis

Substances

  • DNA-Binding Proteins
  • Proto-Oncogene Proteins
  • 5-hydroxymethylcytosine
  • 5-Methylcytosine
  • Dioxygenases
  • Tet2 protein, mouse