Send to

Choose Destination
Scand J Pain. 2019 Jan 28;19(1):193-206. doi: 10.1515/sjpain-2018-0120.

Characterization of the antinociceptive effects of intrathecal DALDA peptides following bolus intrathecal delivery.

Author information

Department of Anesthesiology, University of California, La Jolla, CA, USA.
Department of Anesthesiology, Dokkyo Medical University, Tochigi, Japan.
Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, Canada.
Université de Strasbourg, Alsacia, France.
Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico.
Montreal Clinical Research Institute, Montreal, Quebec, Canada.
Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA, Phone: +(619) 543-3597, Fax: +(619) 543-6070.


Background and aims We systematically characterized the potency and side effect profile of a series of small opioid peptides with high affinity for the mu opioid receptor. Methods Male Sprague Dawley rats were prepared with intrathecal (IT) catheters, assessed with hind paw thermal escape and evaluated for side effects including Straub tail, truncal rigidity, and pinnae and corneal reflexes. In these studies, DMT-DALDA (dDAL) (H-Dmt-D-Arg-Phe-Lys-NH2 MW=981), dDALc (H-Dmt-Cit-Phe-Lys-NH2 MW=868), dDALcn (H-Dmt-D-Cit-Phe-Nle-NH2 MW=739), TAPP (H-Tyr-D-Ala-Phe-Phe-NH2 MW=659), dDAL-TICP ([Dmt1]DALDA-(CH2)2-NH-TICP[psi]; MW=1519), and dDAL-TIPP (H-Dmt-D-Arg-Phe-Lys(Nε-TIPP)-NH2 were examined. In separate studies, the effects of approximately equiactive doses of IT DMT DALDA (10 pmol), morphine (30 nmol) and fentanyl (1 nmol) were examined on formalin-induced flinching at different pretreatment intervals (15 min - 24 h). Results (1) All agents resulted in a dose-dependent reversible effect upon motor function (Straub Tail>Truncal rigidity). (2) The ordering of analgesic activity (%MPE) at the highest dose lacking reliable motor signs after bolus delivery was: DMT-DALDA (80%±6/3 pmol); dDALc (75%±8/1 pmol); dDALcn (84%±10/300 pmol); TAPP (56%±12/10 nmol); dDAL-TICP (52%±27/300 pmol). (3) All analgesic effects were reversed by systemic (IP) naloxone (1 mg/kg). Naltrindole (3 mg/kg, IP) had no significant effect upon the maximum usable peptide dose. (4) Tolerance and cross-tolerance development after 5 daily boluses of DMT-DALDA (3 pmol) and morphine (30 nmol) revealed that both agents displayed a progressive decline over 5 days. (5) Cross-tolerance assessed at day 5 revealed a reduction in response to morphine in DMT-DALDA treated animal but not DMT-DALDA in the morphine treated animal, indicating an asymmetric cross-tolerance. (6) IT DMT-DALDA, morphine and fentanyl resulted in significant reductions in phase 1 and phase 2 flinching. With a 15 min pretreatment all drugs resulted in comparable reductions in flinching. However, at 6 h, the reduction in flinching after DMT-DALDA and morphine were comparably reduced while fentanyl was not different from vehicle. All effects on flinching were lost by 24 h. Conclusions These results emphasize the potent mu agonist properties of the DALDA peptidic structure series, their persistence similar to morphine and their propensity to produce tolerance. The asymmetric cross-tolerance between equiactive doses may reflect the relative intrinsic activity of morphine and DMT-DALDA. Implications These results suggest that the DALDA peptides with their potency and duration of action after intrathecal delivery suggest their potential utility for their further development as a spinal therapeutic to manage pain.


DMT-DALDA; Mu receptor; analgesia; cross-tolerance; tolerance


Supplemental Content

Full text links

Icon for Sheridan PubFactory
Loading ...
Support Center