Format

Send to

Choose Destination
J Sports Sci. 2019 May;37(9):1004-1010. doi: 10.1080/02640414.2018.1538066. Epub 2018 Oct 25.

Effects of footwear midsole thickness on running biomechanics.

Author information

1
a Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences , The Hong Kong Polytechnic University , Hong Kong, China.
2
b Department of Kinesiology , Shenyang Sport University , Shenyang , China.
3
c Li Ning Sports Research Center , Beijing , China.
4
d Department of Orthopaedics & Traumatology , The Chinese University of Hong , Hong Kong , China.

Abstract

Shoe manufacturers launch running shoes with increased (e.g., maximalists) or decreased (e.g., minimalists) midsole thickness and claim that they may prevent running injury. Previous studies tested footwear models with different midsole thicknesses on the market but the shoe construct was not strictly comparable. Therefore, in the present study, we examined the effect of midsole thickness, from 1-mm to 29-mm, in a standard test shoe prototype on the vertical loading rates, footstrike angle and temporal spatial parameters in distance runners. Fifteen male habitual rearfoot strikers were recruited from local running clubs. They were asked to run on an instrumented treadmill in shoes with different midsole thicknesses. We found significant interactions between midsole thickness with vertical loading rates (p < 0.001), footstrike angle (p = 0.013), contact time (p < 0.001), cadence (p = 0.003), and stride length (p = 0.004). Specifically, shoes with thinner midsole (1- and 5-mm) significantly increased the vertical loading rates and shortened the contact time, when compared with thicker midsole shoes (25- and 29-mm). However, we did not observe any substantial differences in the footstrike angle, cadence and stride length between other shod conditions. The present study provides biomechanical data regarding the relationship between full spectrum midsole thicknesses and running biomechanics in a group of rearfoot strikers.

KEYWORDS:

Minimalist; footstrike pattern; maximalist; temporal spatial parameters; vertical loading rate

PMID:
30358487
DOI:
10.1080/02640414.2018.1538066
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center