Send to

Choose Destination
J Am Med Inform Assoc. 2018 Nov 1;25(11):1452-1459. doi: 10.1093/jamia/ocy117.

Heterogeneous network embedding for identifying symptom candidate genes.

Author information

School of Computer and Information Technology and Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China.
Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
Beijing University of Chinese Medicine, Beijing, China.
Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.



Investigating the molecular mechanisms of symptoms is a vital task in precision medicine to refine disease taxonomy and improve the personalized management of chronic diseases. Although there are abundant experimental studies and computational efforts to obtain the candidate genes of diseases, the identification of symptom genes is rarely addressed. We curated a high-quality benchmark dataset of symptom-gene associations and proposed a heterogeneous network embedding for identifying symptom genes.


We proposed a heterogeneous network embedding representation algorithm, which constructed a heterogeneous symptom-related network that integrated symptom-related associations and applied an embedding representation algorithm to obtain the low-dimensional vector representation of nodes. By measuring the relevance between symptoms and genes via calculating the similarities of their vectors, the candidate genes of given symptoms can be obtained.


A benchmark dataset of 18 270 symptom-gene associations between 505 symptoms and 4549 genes was curated. We compared our method to baseline algorithms (FSGER and PRINCE). The experimental results indicated our algorithm achieved a significant improvement over the state-of-the-art method, with precision and recall improved by 66.80% (0.844 vs 0.506) and 53.96% (0.311 vs 0.202), respectively, for TOP@3 and association precision improved by 37.71% (0.723 vs 0.525) over the PRINCE.


The experimental validation of the algorithms and the literature validation of typical symptoms indicated our method achieved excellent performance. Hence, we curated a prediction dataset of 17 479 symptom-candidate genes. The benchmark and prediction datasets have the potential to promote investigations of the molecular mechanisms of symptoms and provide candidate genes for validation in experimental settings.


Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center