Format

Send to

Choose Destination
Dev Biol. 2018 Dec 15;444(2):83-92. doi: 10.1016/j.ydbio.2018.10.003. Epub 2018 Oct 15.

Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos.

Author information

1
Department of Biological Sciences, Auburn University, Auburn, AL 36849, United States; Department of Biological Sciences, Mississippi State University, MS 39762, United States. Electronic address: range@auburn.edu.

Abstract

The spatiotemporal expression of Frizzled receptors is critical for patterning along the early anterior-posterior axis during embryonic development in many animal species. However, the molecular mechanisms that regulate the expression of Frizzled receptors are incompletely understood in any species. In this study, I examine how the expression of two Frizzled receptors, Fzl1/2/7 and Fzl5/8, is controlled by the Wnt signaling network which directs specification and positioning of early regulatory states along the anterior-posterior (AP) axis of sea urchin embryos. I used a combination of morpholino- and dominant negative-mediated interference to knock down each Wnt signaling pathway involved in the AP Wnt signaling network. I found that the expression of zygotic fzl5/8 as well as that of the anterior neuroectoderm gene regulatory network (ANE GRN) is activated by an unknown broadly expressed regulatory state and that posterior Wnt/β-catenin signaling is necessary to down regulate fzl5/8's expression in posterior blastomeres. I show that zygotic expression of fzl1/2/7 in the equatorial ectodermal belt is dependent on an uncharacterized regulatory mechanism that works in the same cells receiving the TGF-β signals patterning this territory along the dorsal-ventral axis. In addition, my data indicate that Fzl1/2/7 signaling represses its own expression in a negative feedback mechanism. Finally, we discovered that a balance between the activities of posterior Wnt8 and anterior Dkk1 is necessary to establish the correct spatial expression of zygotic fzl12/7 expression in the equatorial ectodermal domain during blastula and gastrula stages. Together, these studies lead to a better understanding of the complex interactions among the three Wnt signaling pathway governing AP axis specification and patterning in sea urchin embryos.

KEYWORDS:

Anterior-posterior; Deuterostome evolution; Fzl1/2/7; Fzl5/8; Gene regulatory networks; Wnt signal transduction

PMID:
30332609
DOI:
10.1016/j.ydbio.2018.10.003
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center