Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1987 May 15;262(14):6921-30.

Characterization of lipocortin I and an immunologically unrelated 33-kDa protein as epidermal growth factor receptor/kinase substrates and phospholipase A2 inhibitors.


Reversible calcium-dependent association with a particulate fraction from human placenta was used as the first step in the purification of substrates for the epidermal growth factor-stimulated protein kinase. A protein with apparent Mr of 35,000 was purified to homogeneity, and the sequence was determined for approximately one-fourth of the protein. These residues could be aligned exactly with the previously published sequence of lipocortin I derived from the cDNA from a human lymphoma. Two other proteins that appear to be formed by proteolytic removal of 12 or 26 of the amino acids from the NH2 terminus of the protein also were isolated. Placental lipocortin I was phosphorylated in Tyr-21 in an epidermal growth factor-dependent manner by the kinase activity in a particulate fraction from A431 cells; half-maximal phosphorylation occurred at 50 nM lipocortin I. Lipocortin I phosphorylated on Tyr-21 was approximately 10-fold more sensitive to tryptic cleavage at Lys-26 than was the native protein. Placental lipocortin I and its two truncated forms were potent inhibitors of pancreatic phospholipase A2 activity. Another 33-kDa protein that was not related immunologically to lipocortin I or lipocortin II (calpactin I) also was purified from the EGTA extract of placenta. The unidentified protein inhibited phospholipase A2 but was not a substrate for the epidermal growth factor-stimulated kinase. The mechanism by which these proteins inhibit phospholipase A2 activity was investigated. Attempts to detect direct interaction between these proteins and the enzyme were unsuccessful. However, both the unidentified protein, lipocortin I, and 32P-labeled lipocortin I bound in a Ca2+-dependent manner to the [3H]oleic acid-labeled Escherichia coli membranes used as substrate in the phospholipase A2 assay. Heparin, which is known to block lipocortin I inhibition of phospholipase A2, also blocked binding of lipocortin I to E. coli membranes. The results of these and other experiments raise the possibility that placental lipocortin I inhibits phospholipase A2 activity in this assay by coating the phospholipid and thereby blocking interaction of enzyme and substrate.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center