Format

Send to

Choose Destination
Ecotoxicol Environ Saf. 2019 Jan 15;167:161-168. doi: 10.1016/j.ecoenv.2018.09.118. Epub 2018 Oct 13.

Spermatogenesis dysfunction induced by PM2.5 from automobile exhaust via the ROS-mediated MAPK signaling pathway.

Author information

1
Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014 China.
2
Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014 China; Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014 China.
3
Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014 China. Electronic address: kafei69200@126.com.
4
Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014 China; Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014 China. Electronic address: u806806@cqmu.edu.cn.

Abstract

Long-term exposure to particulate matter 2.5 (PM2.5) from automobile exhaust impairs spermatogenesis through oxidative stress injury, but the underlying mechanism is unknown. To investigate the toxic mechanism of PM2.5-induced spermatogenesis impairment, we focused on the MAPK signaling pathway. We also examined the effects of treatment with vitamins C and E on spermatogenic function. Male SD rats were divided randomly into three groups: control (0.9% sterilized saline), PM2.5 exposure (20 mg/kg.b.w.), and PM2.5 exposure (20 mg/kg.b.w.) with vitamin intervention (vitamin C, 100 mg/kg.b.w.; vitamin E, 50 mg/kg.b.w.). Male rats showed a marked decline in fertility and decreased sperm quality after PM2.5 exposure. The expression of SOD and Nrf2 was significantly decreased, and that of MDA was increased markedly. The expression of blood-testis barrier-associated proteins, such as ZO-1, occludin, connexin 43, and β-catenin, was significantly decreased, the Bcl-2/Bax ratio was downregulated, and the cleaved caspase-3 level was increased. Phosphorylation of MAPKs, including ERKs, JNKs, and p38, was upregulated. Treatment with vitamins C and E reversed the damage induced by PM2.5 exposure. These results suggest that PM2.5 from automobile exhaust disrupted spermatogenesis via ROS-mediated MAPK pathways, and that a combined vitamin C and E intervention effectively mitigated toxicity in the male reproductive system.

KEYWORDS:

Blood–testis barrier; MAPKs; PM(2.5); Reproductive toxicity; Vitamins

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center