Format

Send to

Choose Destination
Glia. 2018 Dec;66(12):2563-2574. doi: 10.1002/glia.23511. Epub 2018 Oct 16.

HIV Tat causes synapse loss in a mouse model of HIV-associated neurocognitive disorder that is independent of the classical complement cascade component C1q.

Author information

1
Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, New York.

Abstract

Microglial activation, increased proinflammatory cytokine production, and a reduction in synaptic density are key pathological features associated with HIV-associated neurocognitive disorders (HAND). Even with combination antiretroviral therapy (cART), more than 50% of HIV-positive individuals experience some type of cognitive impairment. Although viral replication is inhibited by cART, HIV proteins such as Tat are still produced within the nervous system that are neurotoxic, involved in synapse elimination, and provoke enduring neuroinflammation. As complement deposition on synapses followed by microglial engulfment has been shown during normal development and disease to be a mechanism for pruning synapses, we have tested whether complement is required for the loss of synapses that occurs after a cortical Tat injection mouse model of HAND. In Tat-injected animals evaluated 7 or 28 days after injection, levels of early complement pathway components, C1q and C3, are significantly elevated and associated with microgliosis and a loss of synapses. However, C1qa knockout mice have the same level of Tat-induced synapse loss as wild-type (WT) mice, showing that the C1q-initiated classical complement cascade is not driving synapse removal during HIV1 Tat-induced neuroinflammation.

KEYWORDS:

C1q; HIV; Tat; complement; synapse

PMID:
30325063
PMCID:
PMC6309507
DOI:
10.1002/glia.23511
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center