Format

Send to

Choose Destination
PLoS One. 2018 Oct 11;13(10):e0205495. doi: 10.1371/journal.pone.0205495. eCollection 2018.

The effects of kinase modulation on in vitro maturation according to different cumulus-oocyte complex morphologies.

Song BS1,2,3, Jeong PS1,2,4, Lee JH1,2, Lee MH1,2,4, Yang HJ1,2,5, Choi SA1,2, Lee HY1,2, Yoon SB1,2,6, Park YH1,2, Jeong KJ1,2, Kim YH1,2,7, Jin YB1,2, Kim JS1,2,6, Sim BW1,2, Huh JW1,2,7, Lee SR1,2,7, Koo DB4, Chang KT1,2,7, Kim SU1,2,7.

Author information

1
Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea.
2
National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea.
3
Department of Bioscience, University of Science and Technology, Daejeon, Republic of Korea.
4
Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Republic of Korea.
5
Department of Biological Science, College of Natural Sciences, Wonkwang University, Jeollabuk-do, Republic of Korea.
6
Primate Resource Center, Korea Research Institute of Bioscience & Biotechnology, Jeollabuk-do, Republic of Korea.
7
Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea.

Abstract

Successful production of transgenic pigs requires oocytes with a high developmental competence. However, cumulus-oocyte complexes (COCs) obtained from antral follicles have a heterogeneous morphology. COCs can be classified into one of two classes: class I, with five or more layers of cumulus cells; and class II, with one or two layers of cumulus cells. Activator [e.g., epidermal growth factor (EGF)] or inhibitors (e.g., wortmannin and U0126) are added to modulate kinases in oocytes during meiosis. In the present study, we investigated the effects of kinase modulation on nuclear and cytoplasmic maturation in COCs. Class I COCs showed a significantly higher developmental competence than class II COCs. Moreover, the expression of two kinases, AKT and ERK, differed between class I and class II COCs during in vitro maturation (IVM). Initially, inhibition of the PI3K/AKT signaling pathway in class I COCs during early IVM (0-22 h) decreased developmental parameters, such as blastocyst formation rate, blastomere number, and cell survival. Conversely, EGF-mediated AKT activation in class II COCs enhanced developmental capacity. Regarding the MAPK signaling pathway, inhibition of ERK by U0126 in class II COCs during early IVM impaired developmental competence. However, transient treatment with U0126 in class II COCs increased oocyte maturation and AKT activity, improving embryonic development. Additionally, western blotting showed that inhibition of ERK activity negatively regulated the AKT signaling pathway, indicative of a relationship between AKT and MAPK signaling in the process underlying meiotic progression in pigs. These findings may help increase the developmental competence and utilization rate of pig COCs with regard to the production of transgenic pigs and improve our understanding of kinase-associated meiosis events.

PMID:
30308003
PMCID:
PMC6181369
DOI:
10.1371/journal.pone.0205495
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center