Format

Send to

Choose Destination
Neurobiol Dis. 2019 Jan;121:252-262. doi: 10.1016/j.nbd.2018.10.001. Epub 2018 Oct 6.

Beneficial effects of n-3 polyunsaturated fatty acids administration in a partial lesion model of Parkinson's disease: The role of glia and NRf2 regulation.

Author information

1
NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain.
2
NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; LaNCE, Dept. Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa 48940, Spain.
3
BioPraxis AIE, Hermanos Lumière 5, 01510 Miñano, Spain.
4
Dept. Pharmacology, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; Dept. Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
5
Dept. Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
6
LaNCE, Dept. Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Group Nanoneurosurgery, Institute of Health Research Biocruces, Barakaldo 48903, Spain.
7
NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain. Electronic address: manoli.igartua@ehu.eus.
8
NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain. Electronic address: rosa.hernandez@ehu.eus.

Abstract

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been widely associated to beneficial effect over different neurodegenerative diseases. In the present study, we tested the potential therapeutic effect of docohexanoic acid (DHA) and its hydroxylated derivate, DHAH, in a partial lesion model of Parkinson's disease (PD). One month before and four months after the striatal lesion with 6-OHDA was made, the animals were daily treated with DHA (50 mg/kg), DHAH (50 mg/kg), vehicle or saline, by intragastric administration. Animal groups under n-3 PUFA treatments exhibited a trend to improve in amphetamine-induced rotations and cylinder test. The beneficial effect seen in behavioral studies were confirmed with TH immunostaining. TH+ fibers and TH+ neurons increased in the experimental groups treated with both n-3 PUFAs, DHA and DHAH. Moreover, the n-3 PUFAs administration decreased the astrogliosis and microgliosis, in both the striatum and substantia nigra (SN), with a higher decrease of GFAP+ and Iba-1+ cells for the DHAH treated group. This experimental group also revealed a positive effect on Nrf2 pathway regulation, decreasing the positive Nrf2 immmunostaining in the striatum and SN, which revealed a potential antioxidant effect of this compound. Taking together, these data suggest a positive effect of n-3 PUFAs administration, and more concretely of DHAH, for PD treatment as it exhibited positive results on dopaminergic system, neuroinflammation and oxidative stress.

KEYWORDS:

6-OHDA; Docohexaenoic acid; Neuroinflammation; Neuroprotection; Parkinson's disease; Polyunsaturated fatty acids

PMID:
30296616
DOI:
10.1016/j.nbd.2018.10.001

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center