Format

Send to

Choose Destination
Virology. 2018 Oct 2;525:161-169. doi: 10.1016/j.virol.2018.09.016. [Epub ahead of print]

The avian influenza virus PA segment mediates strain-specific antagonism of BST-2/tetherin.

Author information

1
Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park Phaholyothin Rd, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
2
Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park Phaholyothin Rd, Klong 1, Klong Luang, Pathumthani 12120, Thailand. Electronic address: samaporn.tee@biotec.or.th.

Abstract

BST-2 is an antiviral protein described as a powerful cross-species transmission barrier for simian immunodeficiency viruses. Influenza viruses appear to interact with BST-2, raising the possibility that BST-2 may be a barrier for cross-species transmission. An MDCK-based cell line expressing human BST-2 was generated to study human-derived A/Puerto Rico/8/36 (H1N1; PR8) as well as two low pathogenic avian influenza viruses (subtypes H4N6 and H6N1). The H4N6 and H6N1 viruses were less affected by BST-2 expression than PR8, due to their ability to decrease BST-2 levels, a function localized to the PA segment of both avian viruses. Experiments with PA-mutant and -chimeric viruses confirmed that the avian PA segment conferred BST-2 downregulation and antagonism. These results indicate a species-specific ability of PA from low pathogenic avian viruses to mitigate human BST-2 antiviral activity, suggesting that BST-2 is unlikely to be a general cross-species barrier to transmission of such viruses to humans.

KEYWORDS:

Avian influenza; BST-2; Influenza virus; NS1; PA; PA-X; Tetherin

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center