Send to

Choose Destination
Am J Physiol Gastrointest Liver Physiol. 2018 Dec 1;315(6):G966-G979. doi: 10.1152/ajpgi.00087.2018. Epub 2018 Oct 4.

Knockout of ClC-2 reveals critical functions of adherens junctions in colonic homeostasis and tumorigenicity.

Author information

Department of Clinical Sciences, Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina.
Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina.


Adherens junctions (AJs), together with tight junctions (TJs), form an apical junctional complex that regulates intestinal epithelial cell-to-cell adherence and barrier homeostasis. Within the AJ, membrane-bound E-cadherin binds β-catenin, which functions as an essential intracellular signaling molecule. We have previously identified a novel protein in the region of the apical junction complex, chloride channel protein-2 (ClC-2), that we have used to study TJ regulation. In this study, we investigated the possible effects of ClC-2 on the regulation of AJs in intestinal mucosal epithelial homeostasis and tumorigenicity. Mucosal homeostasis and junctional proteins were examined in wild-type (WT) and ClC-2 knockout (KO) mice as well as associated colonoids. Tumorigenicity and AJ-associated signaling were evaluated in a murine colitis-associated tumor model and in a colorectal cancer cell line (HT-29). Colonic tissues from ClC-2 KO mice had altered ultrastructural morphology of intercellular junctions with reduced colonocyte differentiation, whereas jejunal tissues had minimal changes. Colonic crypts from ClC-2 KO mice had significantly higher numbers of less-differentiated forms of colonoids compared with WT. Furthermore, the absence of ClC-2 resulted in redistribution of AJ proteins and increased β-catenin activity. Downregulation of ClC-2 in colorectal cells resulted in significant increases in proliferation associated with disruption of AJs. Colitis-associated tumors in ClC-2 KO mice were significantly increased, associated with β-catenin transcription factor activation. The absence of ClC-2 results in less differentiated colonic crypts and increased tumorigenicity associated with colitis via dysregulation of AJ proteins and activation of β-catenin-associated signaling. NEW & NOTEWORTHY Disruption of adherens junctions in the absence of chloride channel protein-2 revealed critical functions of these junctional structures, including maintenance of colonic homeostasis and differentiation as well as driving tumorigenicity by regulating β-catenin signaling.


adherens junction; chloride channel ClC-2; colonic homeostasis; colonic tumorigenicity; colonoids

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center