Send to

Choose Destination
IEEE Trans Image Process. 2019 Mar;28(3):1092-1107. doi: 10.1109/TIP.2018.2872876. Epub 2018 Sep 28.

Learning a Convolutional Neural Network for Image Compact-Resolution.


We study the dual problem of image super-resolution (SR), which we term image compact-resolution (CR). Opposite to image SR that hallucinates a visually plausible high-resolution image given a low-resolution input, image CR provides a low-resolution version of a high-resolution image, such that the low-resolution version is both visually pleasing and as informative as possible compared to the high-resolution image. We propose a convolutional neural network (CNN) for image CR, namely, CNN-CR, inspired by the great success of CNN for image SR. Specifically, we translate the requirements of image CR into operable optimization targets for training CNN-CR: the visual quality of the compact resolved image is ensured by constraining its difference from a naively downsampled version and the information loss of image CR is measured by upsampling/super-resolving the compact-resolved image and comparing that to the original image. Accordingly, CNN-CR can be trained either separately or jointly with a CNN for image SR. We explore different training strategies as well as different network structures for CNN-CR. Our experimental results show that the proposed CNN-CR clearly outperforms simple bicubic downsampling and achieves on average 2.25 dB improvement in terms of the reconstruction quality on a large collection of natural images. We further investigate two applications of image CR, i.e., low-bit-rate image compression and image retargeting. Experimental results show that the proposed CNN-CR helps achieve significant bits saving than High Efficiency Video Coding when applied to image compression and produce visually pleasing results when applied to image retargeting.


Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center