Metrological large range magnetic force microscopy

Rev Sci Instrum. 2018 Sep;89(9):093703. doi: 10.1063/1.5035175.

Abstract

A new metrological large range magnetic force microscope (Met. LR-MFM) has been developed. In its design, the scanner motion is measured by using three laser interferometers along the x, y, and z axes. Thus, the scanner position and the lift height of the MFM can be accurately and traceably determined with subnanometer accuracy, allowing accurate and traceable MFM measurements. The Met. LR-MFM has a measurement range of 25 mm × 25 mm × 5 mm, larger than conventional MFMs by almost three orders of magnitude. It is capable of measuring samples from the nanoscale to the macroscale, and thus, it has the potential to bridge different magnetic field measurement tools having different spatially resolved scales. Three different measurement strategies referred to as Topo&MFM, MFMXY, and MFMZ have been developed. The Topo&MFM is designed for measuring topography and MFM phase images, similar to conventional MFMs. The MFMXY differs from the Topo&MFM as it does not measure the topography profile of surfaces at the second and successive lines, thus reducing tip wear and saving measurement time. The MFMZ allows the imaging of the stray field in the xz- or yz-planes. A number of measurement examples on a multilayered thin film reference sample made of [Co(0.4 nm)/Pt(0.9 nm)]100 and on a patterned magnetic multilayer [Co(0.4 nm)/Pt(0.9 nm)]10 with stripes with a 9.9 μm line width and 20 μm periodicity are demonstrated, indicating excellent measurement performance.