Aberrant functional connectivity of inhibitory control networks in children with autism spectrum disorder

Autism Res. 2018 Nov;11(11):1468-1478. doi: 10.1002/aur.2014. Epub 2018 Oct 1.

Abstract

Development of inhibitory control is a core component of executive function processes and a key aspect of healthy development. Children with autism spectrum disorder (ASD) show impairments in performance on inhibitory control tasks. Nevertheless, the research on the neural correlates of these impairments is inconclusive. Here, we explore the integrity of inhibitory control networks in children with ASD and typically developing (TD) children using resting state functional Magnetic Resonance Imagaing (MRI). In a large multisite sample, we find evidence for significantly greater functional connectivity (FC) of the right inferior frontal junction (rIFJ) with the posterior cingulate gyrus, and left and right frontal poles in children with ASD compared with TD children. Additionally, TD children show greater FC of rIFJ with the superior parietal lobule (SPL) compared with children with ASD. Furthermore, although higher rIFJ-SPL and rIFJ-IPL FC was related to better inhibitory control behaviors in both ASD and TD children, rIFJ-dACC FC was only associated with inhibitory control behaviors in TD children. These results provide preliminary evidence of differences in intrinsic functional networks supporting inhibitory control in children with ASD, and provide a basis for further exploration of the development of inhibitory control in children with the disorder. Autism Research 2018, 11: 1468-1478. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Inhibitory control is an important process in healthy cognitive development. Behavioral studies suggest that inhibitory control is impaired in autism spectrum disorder (ASD). However, research examining the neural correlates underlying inhibitory control differences in children with ASD is inconclusive. This study reveals differences in functional connectivity of brain networks important for inhibitory control in children with ASD compared with typically developing children. Furthermore, it relates brain network differences to parent-reported inhibitory control behaviors in children with ASD. These findings provide support for the hypothesis that differences in brain connectivity may underlie observable behavioral deficits in inhibitory control in children with the disorder.

Keywords: autism spectrum disorder; brain development; functional connectivity; inhibitory control; resting-state fMRI.

Publication types

  • Multicenter Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Autism Spectrum Disorder / physiopathology*
  • Brain / diagnostic imaging
  • Brain / physiopathology*
  • Brain Mapping / methods
  • Child
  • Child Development / physiology
  • Executive Function / physiology
  • Female
  • Humans
  • Magnetic Resonance Imaging / methods
  • Male
  • Neural Pathways / physiopathology*