Selective enrichment of CD133+/SOX2+ glioblastoma stem cells via adherent culture

Oncol Lett. 2018 Oct;16(4):4567-4576. doi: 10.3892/ol.2018.9154. Epub 2018 Jul 17.

Abstract

Most of the brain tumors are malignant with an extremely poor survival rate. Recent progress in identifying cancer stem cells (CSCs) within the brain tumors is starting to revolutionize our understanding in the imitation and progression of tumors as well as relapse and the development of therapeutic strategies. Suspension spheroid body culture paradigm is a routine method in enriching CSCs. While, it was reported recently that CSCs within the brain tumor may also be enriched through adherent monolayer culture with optimized properties. In the present study, 18 surgically resected brain tumors were used for analyzing the feasibility of adherent enrichment of CSCs. The results indicated that 50% of glioblastomas were able to generate adherent CSCs, which were uniformly positive for Sox2, CD133, GFAP and Nestin. However, adherent culture paradigm failed to yield CSCs in secondary brain tumors, including neurocytomas, ependymomas, germ cell tumors or low-grade astrocytomas, which is most likely due to a lack of CD133+/Sox2+ cells within the original biopsies. Therefore, it was concluded that the adherent culture paradigm may serve as a reliable method in enriching brain CSCs, but this method is more suitable for enriching CD133+/Sox2+ CSCs in glioblastomas.

Keywords: CD133; SOX2; cancer stem cells; glioblastoma.