Format

Send to

Choose Destination
Cell Metab. 2018 Dec 4;28(6):895-906.e5. doi: 10.1016/j.cmet.2018.08.009. Epub 2018 Sep 6.

The Translational Machinery of Human CD4+ T Cells Is Poised for Activation and Controls the Switch from Quiescence to Metabolic Remodeling.

Author information

1
INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Bioscience Department, Università degli Studi di Milano, Milan, Italy.
2
INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy.
3
Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy, Saarland University Campus, Building C2.3, Saarbrücken 66123, Germany.
4
INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.
5
INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.
6
INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Bioscience Department, Università degli Studi di Milano, Milan, Italy. Electronic address: biffo@ingm.org.

Abstract

Naive T cells respond to T cell receptor (TCR) activation by leaving quiescence, remodeling metabolism, initiating expansion, and differentiating toward effector T cells. The molecular mechanisms coordinating the naive to effector transition are central to the functioning of the immune system, but remain elusive. Here, we discover that T cells fulfill this transitional process through translational control. Naive cells accumulate untranslated mRNAs encoding for glycolysis and fatty acid synthesis factors and possess a translational machinery poised for immediate protein synthesis. Upon TCR engagement, activation of the translational machinery leads to synthesis of GLUT1 protein to drive glucose entry. Subsequently, translation of ACC1 mRNA completes metabolic reprogramming toward an effector phenotype. Notably, inhibition of the eIF4F complex abrogates lymphocyte metabolic activation and differentiation, suggesting ACC1 to be a key regulatory node. Thus, our results demonstrate that translation is a direct mediator of T cell metabolism and indicate translation factors as targets for novel immunotherapeutic approaches.

KEYWORDS:

ACC1; CD4(+) T cell; GLUT1; eIF4E; eIF6; metabolism; metabolome; proteome; transcriptome; translational control

PMID:
30197303
DOI:
10.1016/j.cmet.2018.08.009

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center