Format

Send to

Choose Destination
J Proteome Res. 2018 Oct 5;17(10):3547-3556. doi: 10.1021/acs.jproteome.8b00500. Epub 2018 Sep 19.

Activity-Based Protein Profiling of Intraoperative Serine Hydrolase Activities during Cardiac Surgery.

Author information

1
Manitoba Centre for Proteomics & Systems Biology , University of Manitoba & Health Sciences Centre , Winnipeg , Manitoba R3E 3P4 , Canada.
2
Department of Internal Medicine, Section of Nephrology , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada.
3
Department of Internal Medicine, Section of Biomedical Proteomics , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada.
4
Department of Immunology , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada.
5
Department of Surgery , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada.
6
Cardiac Sciences Program , St Boniface Hospital , Winnipeg , Manitoba R2H 2A6 , Canada.

Abstract

The processes involved in the initiation of acute kidney injury (AKI) following cardiopulmonary bypass (CPB) are thought to occur during the intraoperative period. Such a rapid development might indicate that some of the inductive events are not dependent on de novo protein synthesis, raising the possibility that changes in activities of pre-existing enzymes could contribute to the development of AKI. Activity-based protein profiling (ABPP) was used to compare the serine hydrolase enzyme activities present in the urines of CPB patients who subsequently developed AKI versus those who did not (non-AKI) during the intra- and immediate postoperative periods. Sequential urines collected from a nested case-control cohort of AKI and non-AKI patients were reacted with a serine hydrolase activity probe, fluorophosphonate-TAMRA, and separated by SDS-PAGE. The patterns and levels of probe-labeled proteins in the two groups were initially comparable. However, within 1 h of CPB there were significant pattern changes in the AKI group. Affinity purification and mass spectrometry-based analysis of probe-labeled enzymes in AKI urines at 1 h CPB and arrival to the intensive care unit (ICU) identified 28 enzymes. Quantitative analysis of the activity of one of the identified enzymes, kallikrein-1, revealed some trends suggesting differences in the levels and temporal patterns of enzyme activity between a subset of patients who developed AKI and those who did not. A comparative analysis of affinity-purified probe reacted urinary proteins from these patient groups during the intraoperative period suggested the presence of both shared and unique enzyme patterns. These results indicate that there are intraoperative changes in the levels and types of serine hydrolase activities in patients who subsequently develop AKI. However, the role of these activity differences in the development of AKI remains to be determined.

KEYWORDS:

activity-based protein profiling; acute kidney injury; cardiopulmonary bypass; kallikrein-1; proteomics; serine hydrolase

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center