Format

Send to

Choose Destination
Radiology. 2018 Nov;289(2):293-312. doi: 10.1148/radiol.2018172656. Epub 2018 Sep 4.

Photon-counting CT: Technical Principles and Clinical Prospects.

Author information

1
From the Department of Radiology (M.J.W., M.P., N.J.P., D.F.) and Stanford Cardiovascular Institute (D.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (M.J.W.); Departments of Bioengineering (M.P., N.J.P.) and Electrical Engineering (N.J.P.), Stanford University, Stanford, Calif; Department of Radiology and Department of Imaging Sciences and Biomedical Informatics, Emory University School of Medicine, Atlanta, Ga (A.P.).

Abstract

Photon-counting CT is an emerging technology with the potential to dramatically change clinical CT. Photon-counting CT uses new energy-resolving x-ray detectors, with mechanisms that differ substantially from those of conventional energy-integrating detectors. Photon-counting CT detectors count the number of incoming photons and measure photon energy. This technique results in higher contrast-to-noise ratio, improved spatial resolution, and optimized spectral imaging. Photon-counting CT can reduce radiation exposure, reconstruct images at a higher resolution, correct beam-hardening artifacts, optimize the use of contrast agents, and create opportunities for quantitative imaging relative to current CT technology. In this review, the authors will explain the technical principles of photon-counting CT in nonmathematical terms for radiologists and clinicians. Following a general overview of the current status of photon-counting CT, they will explain potential clinical applications of this technology.

PMID:
30179101
DOI:
10.1148/radiol.2018172656
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center