Format

Send to

Choose Destination
Mol Biochem Parasitol. 2018 Oct;225:38-46. doi: 10.1016/j.molbiopara.2018.08.009. Epub 2018 Aug 31.

Identification and functional characterization of thioredoxin-related protein of 14 kDa in Oncomelania hupensis, the intermediate host of Schistosoma japonicum.

Author information

1
State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
2
State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China. Electronic address: huangshuaiqin@foxmail.com.
3
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China.
4
State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China. Electronic address: tang_liang@wuxiapptec.com.

Abstract

Oncomelania hupensis is the unique intermediate host of the blood fluke Schistosoma japonicum, which causes schistosomiasis. In snails, highly toxic reactive oxygen species (ROS) can be continually generated by hemocytes in response to foreign particles or pathogens, and may be involved in damaging and eliminating digenean larvae. Thioredoxin-related protein of 14‚ÄČkDa (TRP14) is a member of the Trx superfamily, and plays an important role in the scavenging of ROS. This study was designed to identify and characterize TRP14 from O. hupensis (OhTRP14), and investigate the involvement of OhTRP14 in the scavenging of ROS in snail host immune response to the parasite S. japonicum. Here we expressed and purified the recombinant OhTRP14 and its mutant, and rOhTRP14 displayed oxidoreductase activity dependent on the CPDC motif. OhTRP14 protein was ubiquitously present in all the tested snail tissues, and especially immunolocalized in the cytoplasm of immune cell types (hemocytes). Both the expression of OhTRP14 and ROS level increased significantly in snails following challenge with S. japonicum. The dsRNA-mediated knockdown of OhTRP14 was successfully conducted by oral feeding, and ROS production was increased by OhTRP14 knockdown, implying that OhTRP14 was involved in the scavenging of ROS in O. hupensis circulating hemocytes. Therefore, we conclude that OhTRP14 may be involved in the scavenging of ROS in snail host immune response to the parasite S. japonicum. The results expand our understanding of the interaction between this parasite and host, and lay a foundation for the establishment of Oncomelania-schistosome infection models.

KEYWORDS:

Immune response; Oncomelania hupensis; Reactive oxygen species; Schistosoma japonicum; TRP14

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center