Format

Send to

Choose Destination
Methods Cell Biol. 2018;147:29-40. doi: 10.1016/bs.mcb.2018.07.003. Epub 2018 Aug 9.

Controllable stress patterns over multi-generation timescale in microfluidic devices.

Author information

1
Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France. Electronic address: youlian.goulev@gmail.com.
2
Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France.
3
Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France. Electronic address: charvin@igbmc.fr.

Abstract

The generation of complex temporal stress patterns may be instrumental to investigate the adaptive properties of individual cells submitted to environmental stress on physiological timescale. However, it is difficult to accurately control stress concentration over time in bulk experiments. Here, we describe a microfluidics-based protocol to induce tightly controllable H2O2 stress in budding yeast while constantly monitoring cell growth with single cell resolution over multi-generation timescale. Moreover, we describe a simple methodology to produce ramping H2O2 stress to investigate the homeostatic properties of the H2O2 scavenging system.

KEYWORDS:

Adaptation; Cell growth; Live-cell imaging; Microfluidics; Stress response

PMID:
30165960
DOI:
10.1016/bs.mcb.2018.07.003

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center