Format

Send to

Choose Destination
J Conserv Dent. 2018 Jul-Aug;21(4):408-412. doi: 10.4103/JCD.JCD_308_17.

Effect of acidic pH on microhardness and microstructure of theraCal LC, endosequence, mineral trioxide aggregate, and biodentine when used as root repair material.

Author information

1
Department of Conservative Dentistry and Endodontics, Sibar Institute of Dental Sciences, Guntur, Andhra Pradesh, India.

Abstract

Introduction:

The aim of this study was to investigate the microhardness and microstructural features of newer tricalcium silicate materials: TheraCal LC, mineral trioxide aggregate (MTA), biodentine (BD), and Endosequence Root Repair Material (ERRM) putty, after exposure to acidic environments in comparison with distilled water.

Materials and Methods:

A total of 80 extracted single-rooted premolars were collected. All the selected specimens were sectioned vertically, and cavities were prepared on the root surface. Specimens were divided into four groups of 20 each, i.e., Group 1: (n = 15) MTA (ProRoot, Dentsply Tulsa Dental, Tulsa, OK, USA), Group 2: (n = 15) BD (Septodont, France), Group 3: (n = 15) ERRM putty (Brasseler, USA), and Group 4: (n = 15) TheraCal LC (Bisco Inc Schaumburg). Materials were placed into prepared cavities. About 10 specimens per each group were exposed to butyric acid buffered at a pH level of 5.5 for 7 days at 37c, and 10 specimens from each group were exposed to distilled water serving as a control group. The surface microhardness was measured after exposure to either acid or distilled water. Scanning electron microscope was used to observe the internal microstructure morphology. Two-way analysis of variance was applied to evaluate the Knoop microhardness value (KHN).

Results:

Results showed that the microhardness values of the materials were significantly higher in the neutral environment of butyric acid at pH 7.4 when compared to those in the acidic condition of pH 5.4 for all groups (P < 0.001). TheraCal LC had higher microhardness values than BD, MTA, ERRM putty at 5.5 pH levels (P < 0.001).

Conclusion:

The microhardness values of TheraCal LC, BD, ERRM Putty, and MTA were reduced in an acidic environment, which resulted in these materials having more porous and less crystalline microstructures. TheraCal LC seems the most suitable material for application to an area of inflammation where a low pH value may exist.

KEYWORDS:

Biodentine; TheraCal LC; butyric acid; endosequence root repair putty; microhardness; microstructure; mineral trioxide aggregate

Supplemental Content

Full text links

Icon for Medknow Publications and Media Pvt Ltd Icon for PubMed Central
Loading ...
Support Center