Furamidine Rescues Myotonic Dystrophy Type I Associated Mis-Splicing through Multiple Mechanisms

ACS Chem Biol. 2018 Sep 21;13(9):2708-2718. doi: 10.1021/acschembio.8b00646. Epub 2018 Aug 27.

Abstract

Myotonic dystrophy type 1 (DM1) is an autosomal dominant, CTG•CAG microsatellite expansion disease. Expanded CUG repeat RNA sequester the muscleblind-like (MBNL) family of RNA-binding proteins, thereby disrupting their normal cellular function which leads to global mis-regulation of RNA processing. Previously, the small molecule furamidine was shown to reduce CUG foci and rescue mis-splicing in a DM1 HeLa cell model and to rescue mis-splicing in the HSALR DM1 mouse model, but furamidine's mechanism of action was not explored. Here we use a combination of biochemical, cell toxicity, and genomic studies in DM1 patient-derived myotubes and the HSALR DM1 mouse model to investigate furamidine's mechanism of action. Mis-splicing rescue was observed in DM1 myotubes and the HSALR DM1 mouse with furamidine treatment. Interestingly, while furamidine was found to bind CTG•CAG repeat DNA with nanomolar affinity, a reduction in expanded CUG repeat transcript levels was observed in the HSALR DM1 mouse but not DM1 patient-derived myotubes. Further investigation in these cells revealed that furamidine treatment at nanomolar concentrations led to up-regulation of MBNL1 and MBNL2 protein levels and a reduction of ribonuclear foci. Additionally, furamidine was shown to bind CUG RNA with nanomolar affinity and disrupted the MBNL1 -CUG RNA complex in vitro at micromolar concentrations. Furamidine's likely promiscuous interactions in vitro and in vivo appear to affect multiple pathways in the DM1 mechanism to rescue mis-splicing, yet surprisingly furamidine was shown globally to rescue many mis-splicing events with only modest off-target effects on gene expression in the HSALR DM1 mouse model. Importantly, over 20% of the differentially expressed genes were shown to be returned, to varying degrees, to wild-type expression levels.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antifungal Agents / pharmacology
  • Antifungal Agents / therapeutic use
  • Benzamidines / pharmacology
  • Benzamidines / therapeutic use*
  • Cells, Cultured
  • Disease Models, Animal
  • Humans
  • Mice
  • Muscle Fibers, Skeletal / drug effects
  • Muscle Fibers, Skeletal / metabolism
  • Muscle Fibers, Skeletal / pathology
  • Myotonic Dystrophy / drug therapy*
  • Myotonic Dystrophy / genetics*
  • Myotonic Dystrophy / metabolism
  • Myotonic Dystrophy / pathology
  • RNA / genetics
  • RNA / metabolism
  • RNA Splicing / drug effects*
  • RNA-Binding Proteins / genetics
  • RNA-Binding Proteins / metabolism

Substances

  • Antifungal Agents
  • Benzamidines
  • MBNL1 protein, human
  • MBNL2 protein, human
  • RNA-Binding Proteins
  • RNA
  • furamidine