Format

Send to

Choose Destination
Neuroimage. 2018 Dec;183:254-262. doi: 10.1016/j.neuroimage.2018.08.024. Epub 2018 Aug 11.

Content-specific codes of parametric auditory working memory in humans.

Author information

1
Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany. Electronic address: isil.uluc@fu-berlin.de.
2
Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany; Institute of Cognitive Science, University of Osnabrück, 49090 Osnabrück, Germany.
3
Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.

Abstract

Brain activity in frontal regions has been found to represent frequency information with a parametric code during working memory delay phases. The mental representation of frequencies has furthermore been shown to be modality independent in non-human primate electrophysiology and human EEG studies, suggesting frontal regions encoding quantitative information in a supramodal manner. A recent fMRI study using multivariate pattern analysis (MVPA) supports an overlapping multimodal network for the maintenance of visual and tactile frequency information over frontal and parietal brain regions. The present study extends the investigation of working memory representation of frequency information to the auditory domain. To this aim, we used MVPA on fMRI data recorded during an auditory frequency maintenance task. A support vector regression analysis revealed working memory information in auditory association areas and, consistent with earlier findings of parametric working memory, in a frontoparietal network. A direct comparison to an analogous dataset of vibrotactile parametric working memory revealed an overlap of information coding in prefrontal regions, particularly in the right inferior frontal gyrus. Therefore, our findings indicate that the prefrontal cortex represents frequency-specific working memory content irrespective of the modality as has been now also revealed for the auditory modality.

KEYWORDS:

Abstract quantity; Acoustic flutter; Auditory; Frequency discrimination; MVPA; Parametric; Vibrotactile; Working memory; fMRI

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center