Send to

Choose Destination
Chemistry. 2018 Dec 10;24(69):18398-18402. doi: 10.1002/chem.201803267. Epub 2018 Oct 4.

Surface Modification on Pd-TiO2 Hybrid Nanostructures towards Highly Efficient H2 Production from Catalytic Formic Acid Decomposition.

Author information

Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, Hefei Science Center (CAS), and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.


Metal-containing nanocrystals with well-designed surface structures represent a class of model systems for revealing the fundamental physical and chemical processes involved in heterogeneous catalysis. Herein it is shown how surface modification can be utilized as an efficient strategy for controlling the surface electronic state of catalysts and, thus, for tuning their catalytic activity. As model catalysts, the Pd-tetrahedron-TiO2 nanostructures, modified on the surface with different foreign atoms, showed a varied activity in the catalytic decomposition of formic acid towards H2 production. The catalytic activity increases with a reduction in the work function of modified atoms; this reduction can be well explained by a surface polarization mechanism. In this hybrid system, the difference in the work functions of Pd and modified atoms results in surface polarization on the Pd surface and, thus, in the tuning of its charge state. Together with the Schottky junction between TiO2 and metals, the tuned charge state enables the promotion of catalytic efficiency in the catalytic decomposition of formic acid to H2 and CO2 .


formic acid; hydrogen; palladium; surface chemistry; work function


Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center