Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1986 May 15;261(14):6332-7.

Leukotriene A4. Enzymatic conversion into 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acid by mouse liver cytosolic epoxide hydrolase.

Abstract

Mouse liver homogenates transformed leukotriene A4 into a 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acid. This novel enzymatic metabolite of leukotriene A4 was characterized by physical means including ultraviolet spectroscopy, high performance liquid chromatography, and gas chromatography-mass spectrometry. After subcellular fractionation, the enzymatic activity was mostly recovered in the 105,000 X g supernatant and 20,000 X g pellet. Heat treatment (80 degrees C, 10 min) or digestion with a proteolytic enzyme abolished the enzymatic activity in the high speed supernatant. A purified cytosolic epoxide hydrolase from mouse liver also transformed leukotriene A4 into a 5,6-dihydroxyeicosatetraenoic acid with the same physico-chemical characteristics as the compound formed in crude cytosol, but not into leukotriene B4, a compound previously reported to be formed in liver cytosol (Haeggström, J., Rådmark, O., and Fitzpatrick, F.A. (1985) Biochim. Biophys. Acta 835, 378-384). These findings suggest a role for leukotriene A4 as an endogenous substrate for cytosolic epoxide hydrolase, an enzyme earlier characterized by xenobiotic substrates. Furthermore, they indicate that leukotriene A4 hydrolase in liver cytosol is a distinct enzyme, separate from previously described forms of epoxide hydrolases in liver.

PMID:
3009453
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center