Format

Send to

Choose Destination
Trends Endocrinol Metab. 2018 Nov;29(11):795-807. doi: 10.1016/j.tem.2018.07.002. Epub 2018 Aug 2.

Molecular Genetics of Premature Ovarian Insufficiency.

Author information

1
Center for Reproductive Medicine, Shandong University, Jinan 250021, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, Shandong, China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, Shandong, China; Suzhou Institute of Shandong University, Suzhou 215123, Jiangsu, China.
2
Center for Reproductive Medicine, Shandong University, Jinan 250021, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, Shandong, China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, Shandong, China.
3
Center for Reproductive Medicine, Shandong University, Jinan 250021, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, Shandong, China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, Shandong, China. Electronic address: qinyingying@163.com.
4
Center for Reproductive Medicine, Shandong University, Jinan 250021, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, Shandong, China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, Shandong, China; Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200127, China. Electronic address: chenzijiang@hotmail.com.

Abstract

Premature ovarian insufficiency (POI) is highly heterogeneous in genetic etiology. Yet identifying causative genes has been challenging with candidate gene approaches. Recent approaches using next generation sequencing (NGS), especially whole exome sequencing (WES), in large POI pedigrees have identified new causatives and proposed relevant candidates, mainly enriched in DNA damage repair, homologous recombination, and meiosis. In the near future, NGS or whole genome sequencing will help better define genes involved in intricate regulatory networks. The research into miRNA and age at menopause represents an emerging field that will help unveil the molecular mechanisms underlying pathogenesis of POI. Shedding light on the genetic architecture is important in interpreting pathogenesis of POI, and will facilitate risk prediction for POI.

KEYWORDS:

Premature ovarian insufficiency (POI); candidate gene; menopause; miRNA; next generation sequencing (NGS); whole exome sequencing (WES)

PMID:
30078697
DOI:
10.1016/j.tem.2018.07.002
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center